![]() |
||
KontaktE-Mail: |
Kontaktptolksdo (at) uni-mainz.de |
|
Lehre
SS 2022 WS 2021/2022 SS 2021 phantom phantom WS 2020/2021 WS 2020/2021 SS 2020 WS 2019/2020 WS 2019/2020 SS 2017 |
Vorlesung: Analysis 3 (in Präsenz) Vorlesung: Analysis 2 (hybrid) Vorlesung: Analysis 1 (digital) Für weitere Informationen nehmen Sie bitte an der Info-Veranstaltung am 06. April teil. Den Link finden Sie in Jogustine unter der Veranstaltung "Einführungsveranstaltung für Studienanfänger" Vorlesung: Harmonische Analysis und Partielle Differentialgleichungen (digital, bitte über jogustine anmelden und dann ins zugehörige Moodle schauen!) Hauptseminar: Harmonische Analysis und Partielle Differentialgleichungen Vorlesung: Harmonische Analysis (digital) Vorlesung: Halbgruppenmethoden für die Navier-Stokes-Gleichungen Proseminar: Kuriositäten der Analysis Vorlesung: Navier-Stokes-Gleichungen (an der TU Darmstadt) |
Articles (published)
On the L^p-theory of second-prder elliptic operators in divergence form with complex coefficients. With A. F. M. ter Elst, R. Haller-Dintelmann, and J. Rehberg. J. Evol. Equ. 21 (2021), no. 4, 3963-4003. L^p-extrapolation of non-local operators: Maximal regularity of elliptic integrodifferential operators with measurable coefficients. J. Evol. Equ. 21 (2021), no. 3, 3129-3151. Lorentz spaces in action on pressureless systems arising from models of collective behavior. With R. Danchin and P. B. Mucha. J. Evol. Equ. 21 (2021), no. 3, 3103-3127. On off-diagonal decay properties of the generalized Stokes semigroup with bounded measurable coefficients. J. Elliptic Parabol. Equ. 7 (2021), no. 2, 323-340. Strong time periodic solutions to the bidomain equations with FitzHugh-Nagumo type nonlinearities. With M. Hieber, N. Kajiwara, and K. Kress, Ann. Mat. Pura. Appl. (4) 199 (2020), no. 6, 2435-2457. The Stokes resolvent problem: optimal pressure estimates and remarks on resolvent estimates in convex domains. Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper no. 154. The Navier-Stokes equations in exterior Lipschitz domains: L^p-theory. With K. Watanabe. J. Differential Equations 269 (2020), no. 7, 5765-5801. Nematic liquid crystals in Lipschitz domains. With A. P. Choudhury and A. Hussein, SIAM J. Math. Anal. 50 (2018), no. 4, 4282-4310. R-sectoriality of higher-order elliptic operators on general bounded domains. J. Evol. Equ. 18 (2018), no. 2, 323-349. On the L^p-theory of the Navier-Stokes equations in three-dimensional bounded Lipschitz domains. Math. Ann. 371 (2018), no. 1-2, 445-460. Characterizations of Sobolev functions that vanish on a part of the boundary. With M. Egert, Discrete Contin. Dyn. Syst. Ser. S 10 (2017), no. 4, 729-743. The Kato square root problem follows from an extrapolation property of the Laplacian. With M. Egert and R. Haller-Dintelmann, Publ. Math. 60 (2016), no. 2, 451-483. The Kato square root problem for mixed boundary conditions. With M. Egert and R. Haller-Dintelmann, J. Funct. Anal. 267 (2014), no. 5, 1419-1461. |
Articles (preprints)
The Stokes operator in two-dimensional bounded Lipschitz domains. With F. Gabel. Available at arXiv:2204.05867 Critical regularity issues for the compressible Navier-Stokes system in bounded domains. With R. Danchin. Available at arXiv:2201.03823 A non-local approach to the generalized Stokes operator with bounded measurable coefficients. Available at arXiv:2011.13771 Free Boundary Problems via Da Prato - Grisvard Theory. With R. Danchin, M. Hieber, and P. B. Mucha. Availabe at arXiv:2011.07918v2 Extendability of functions with partially vanishing trace. With S. Bechtel, R. M. Brown, and R. Haller-Dintelmann. Available at arXiv:1910.06009 |
Dissertation
On the L^p-theory of the Navier-Stokes equations on Lipschitz domains. Technische Universität Darmstadt, Darmstadt, 2017. |